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ABSTRACT

When an unsmooth flexible tube rotates, rich tones are pro-
duced. We propose a physical model that simulates this behavior.
The tube is modeled as an open-ended organ pipe blown by an air
stream pumped by a rotationally induced pressure which follows
Bernoulli’s principle.

1. INTRODUCTION

The Voice of the dragon is the name given to a group of Japanese
children twirling flexible plastic tubes above their heads. The burst
of tones that emerged from each musical pipe soared and dropped
with rotational velocity. A corrugated plastic tube, infact, produces
pleasant sonorities while rotating in a circular motion.

Singing corrugated tubes became popular in early 70s when
a toy called hummer was introduced to the market. The hummer
is a corrugated plastic tube about one meter long, similar to the
one shown in figure 1. When whirled in the air, the tube pro-
duces a series of pitches, starting from the first harmonic to its
overtones. Mark Silvermann, after a visit to Japan where he heard
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Figure 1: A singing plastic tube and its relevant physical dimen-
sions.

the Japanese children’s performance, studied the acoustics of such
tubes [1]. He mounted the corrugated tube to a thin slab attached
to a wheel free to rotate in a vertical plane, with a counterweight
fixed at the opposite end of the slab so that the center of mass of the
system laid on the axis of the wheel, as shown in figure 2. A motor
whose velocity was varied using a rheostat was moving the wheel.
Using a microphone, a stroboscope and a counter, the tones pro-
duced were recorded and the spin rates measured. The data were
analyzed by Fourier analysis.

Also Crawford studied the acoustics of corrugated tube using
a different device [2]. He attached the tube to his car and took it
for a ride. Different tones were produced according to the car’s
velocity.

Both researchers made the following observations: whirling
the tube slowly initiates the first overtone; with increased velocity,
the higher partials resonate. Obviously, the length of the tube de-
termines the pitches that will sing. Blowing into a smooth tube or
whirl it in the air, no sound is produced. However, whirling a cor-
rugated tube results in a noticeable tone. In a corrugated tube open
at both ends, a tone is produced when the “bump” frequency of the
air flowing through the tube equals one of the resonant frequencies
of the tube. Air velocity, tube length, corrugation and diameter
sizes therefore influence the pitch and volume of the sound pro-
duced.

The interest of toy makers as well as composers on singing
tubes is due to the fact that the tubes’ pure tones create an unusual
ear-pleasing sonic zone easily discernible from the sound of the
other bore-based instrument family members.

In the following section the sound production mechanism of
corrugated tubes is described in details.

2. ACOUSTICS OF CORRUGATED TUBES

In order to understand how the corrugated tube produces sound,
different components need to be taken into account.

For an ideal open-ended tube, the modes are given by the fol-
lowing expression:

fn =
nc

2L
(1)

for n = 1, 2, 3, .., where c is the speed of sound and L is the
tube length [3]. Since the air is moving in an out of the tube, the
effective length L′ of the resonating column of air is actually given
by [3]:

L′ = L = 1.22r (2)

where r is the radius of the tube.
As suggested in [1] and [2], with both ends open the tube re-

sembles a centrifugal pump. When whirling, the air is sucked in
through the end closer to the hand and pushed out through the outer
end. In order to make the vibrational modes resonate and thus pro-
duce pitch, some of the airflow energy is converted to excitation
energy.

It is interesting to investigate the dynamics of the tube first at a
large scale and then at a microscale, which implies examining the
role of the corrugations.
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Figure 2: The apparatus used in [1] to measure tube’s frequencies
and rotational velocity

At a large scale there exists a vortical flow centered in the sta-
tionary end of the tube and normal to the axis of the tube with
tangential air velocity given by:

V (s) = ωms

where ωm is the angular velocity and s is the position along the
tube (from 0 to L).

Along the tube, the rotationally induced pressure difference
between the two ends produces an axial flow with velocity v.

In order to relate the angular velocity ωm to the pressure dif-
ference p, assuming the flow to be incompressible and smooth, we
can use Bernoulli’s principle:

p(s) +
1

2
ρ[v(s)2 + ω2

ms2] = const. (3)

where p(s) is the pressure and v(s) is the axial velocity at position
s. With the same assumptions, the axial velocity through the tube
is uniform, i.e. v(s) = const. for 0 ≤ s ≤ L. Therefore the pres-
sure difference between the two extremities of the tube (stationary
= 0 and rotating = L) is given by:

p = p(0) − p(L) = L2ω2

m/2

It is now necessary to explain the role of the corrugations. This
is done by relating axial air velocity vn to distance between corru-
gations d as follows:

fn = α1

vn

d
(4)

where α1 is a proportionality constant, vn is the axial air ve-
locity of mode n and fn is the resonant frequency of that same
mode. Equation 4 is justified by the fact that moving past the cor-
rugations the air is perturbed at a frequency proportional to the ax-
ial air velocity and inversely proportional to the corrugation spac-
ing. When fn coincides with a resonant frequency of the tube, the
sound is amplified.

We still need to relate the axial velocity v to the tangential air
velocity V (s). This is done by applying Bernoulli’s equation 3
which gives vn = ωmnL = V (L), where ωmn is the angular ve-
locity of mode n. This equation states that, in case of frictionless
flow, the axial velocity along the tube is the same as the tangen-
tial velocity at the rotating end. However, since the flow is not

perfectly frictionless, we assume that the axial air velocity is pro-
portional to the tangential air velocity:

vn = α2ωmnL (5)

where α2 is another proportionality constant (experimentally, how-
ever, b = 1 [1]). Combining equation 4 and 5 we obtain:

fn = α1α2

ωmnL

d
(6)

which states that the modes of the rotating tube are directly pro-
portional to the angular velocity and inversely proportional to the
distance between corrugations.

2.1. Accounting for friction

As previously mentioned, the flow inside the tube is not perfectly
frictionless. Friction along the walls acts to resist the acceleration
of air in the tube.

It can be shown [2] that friction generates a nonuniform flow
and the effect of friction is to give α1 = 2. From equation 4 we
can therefore conclude that fn = 2vn/d.

The previous equation states that knowing the axial air speed
and the distance between corrugations, it is possible to calculate
the frequency at which the tube resonate.

2.2. The Doppler effect

The finally component of the acoustics of the tube that influences
its sonorities is the role of the rotation. When the tube rotates a
Doppler shift is perceived, i.e. an apparent change in frequency
content which is due to the motion of the tube relative to the lis-
tener. As derived in most elementary physics texts, the Doppler
shift is given by

ωl = ωs

1 + vls

c

1 −
vsl

c

(7)

where ωs is the radian frequency emitted by the source at rest, ωl

is the frequency received by the listener, vls denotes the speed of
the listener in the direction of the source, vsl denotes the speed
of the source in the direction of the listener, and c denotes sound
speed.

3. ANALYSIS OF A CORRUGATED TUBE

We analyzed the tube shown in figure 1, in order to validate the
theory presented in the previous section. The corrugated plastic
tube was 1.08 m long, and with a radius r = 0.019 m. The corru-
gations were 6 mm long.

The second column of table 1 shows the theoretical modes
of our corrugated tube, obtained using equation 1 with the radius
correction proposed by Benade (see equation 2).

The third column shows the experimental frequencies obtained
by recording the tube while rotating at different velocities and an-
alyzing the amplitude of its frequency response. The peak of the
spectrum were easily detected, since one strong mode is always
perceivable. Note the good agreement between the experimental
and theoretical frequency. The fourth column shows the rotational
velocities associated with each frequencies. Those velocities were
calculated looking at the time domain waveform, and counting the
number of rotations per second which are clearly visible as, for
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Mode Theoretical Experimental Rotational
number n Frequency Frequency Velocity

1 156 Hz
2 312 Hz 310Hz 0.5 Hz
3 468 Hz 464Hz 0.9 Hz
4 624 Hz 625Hz 1.7 Hz
5 781 Hz 769Hz 2.5 Hz
6 937 Hz 925Hz 3.0 Hz
7 1093 Hz 1081Hz 3.3 Hz
8 1249 Hz 1250Hz 4.2 Hz

Table 1: Mode number, theoretical and experimental frequency
and rotational velocity of the tube used for the simulations.
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Figure 3: Time domain waveforms for the corrugated tube when
rotating at 1.7 rot/sec. Notice the modulations given by the
Doppler effect.

example, figure 3 shows. Each rotation, infact, corresponds to a
modulation of the time domain waveform.

Figure 5 shows the amplitude of the frequency response for
six modes of the tube. From top to bottom, mode 3, 4, 5, 6, 7
and 8 of the tube are shown (see table 1). Notice how a strong
resonance is presence corresponding to each mean value of the
rotational speed. While the rotational spedd is not discretized, the
resonance frequencies are since they correspond to the resonant
frequencies of the open-ended tube.

As a last analysis example, figure 5 shows the sonogram of
the rotating tube while performing two arpeggios varying the rota-
tional speed twice over time. High partials are amplified when the
rotational speed increases, according to 1.

4. MODELING CORRUGATED TUBES

4.1. Waveguide model of a cylindrical tube

We consider the tube as an organ pipe open at both ends. A one
dimensional digital waveguide such as the one shown in figure 6
can therefore be used to model the tube resonator [4]. Propagation
losses are modeled using the bandpass filter Hb(z) described in
the following section.

4.2. Modeling the corrugations

We model the corrugations by reproducing their effect rather than
building a precise physical model, since the turbulence inside the
rotating tube are complex and still not well understood. The effect,

0 1000 2000 3000 4000 5000
-40

-20

0

20

Velocity 0.9 rev/s

 Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

0 1000 2000 3000 4000 5000
-40

-20

0

20

 Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Velocity 1.7 rev/s

0 1000 2000 3000 4000 5000
-40

-20

0

20

40

 Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Velocity 2.5 rev/s

0 1000 2000 3000 4000 5000
-40

-20

0

20

40

Velocity 3 rev/s

 Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

0 1000 2000 3000 4000 5000
-40

-20

0

20

40

Velocity 3.3 rev/s

 Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

0 1000 2000 3000 4000 5000
-40

-20

0

20

40

 Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Velocity 4.2 rev/s

Figure 4: Frequency response of six modes of the corrugated tube
used for the simulations. The data correspond from top to bottom
to frequencies and rotational velocity reported in table 1.

on the other end, is rather clear and has already been explained by
equation 4.

In our algorithm the distance between corrugations is known,
and the axial air velocity vn of mode n is calculated from equa-
tion 5, in which the rotational velocity is an input parameter of the
model. At each sample i, we calculate the frequency fcn for which
fcn = vn/d, using equation 4. Then we calculate the closest mode
fa of the tube that corresponds to fcn. This is the center frequency
of a bandpass resonant filter whose role is to amplify fa.

The simple algorithm to calculate the effect of corrugations is
therefore the following:

known variables: fn, d, ωm, L
for i = 1 . . . samples

1) Compute vn from vn = ωmnL
2) Compute fcn = vn/d
3) fa = round(fcn/f0)f0

end
end

4.3. Modeling the Doppler effect

The last step of the tube simulation consists of modeling the rota-
tion. The motion of the tube relative to the listener produces the
well-known Doppler effect, i.e. an apparent change in frequency
content of an acoustic signal. A simulation of the Doppler shift
was proposed in [5] and [6].

Recently [7] a detailed simulation of the Doppler shift was
proposed, which uses time varying delay lines [8]. The Doppler
shift was applied to the simulation of the circular rotation of a
Leslie horn.

Since there is a strong similarity between the rotation of the
Leslie horn and the rotation of the corrugated tube, we use the
same algorithm here. A more detailed derivation of the Doppler
effect applied to a rotational source is found in [7].
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Figure 5: Sonogram of the rotating tube while varying the rota-
tional speed. Two arpeggios are obtained by varying the rotational
speed.
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Figure 6: Waveguide model of a cylindrical tube. Losses are
lumped in the filters Hb. R represents a reflection filter.

For a circularly rotating tube, the source position can be ap-
proximated as

x
s
(t) =

»

rs cos(ωmt)

rs sin(ωmt)

–

(8)

where rs is the circular radius and ωm is, as before, the angular
velocity.

By (8), the source velocity for the circularly rotating tube is

v
s
(t) =

d

dt
x

s
(t) =

»

−rsωm sin(ωmt)

rsωm cos(ωmt)

–

(9)

Since the Doppler effect depends only on the relative position
between the source and the listener [9], after some derivations that
can be found in [7], we obtain:

v
sl

=
−rlrsωm sin(ωmt)

r2

l
+ 2rlrs cos(ωmt) + r2

s

»

rl − rs cos(ωmt)

−rs sin(ωm)t

–

. (10)

where v
sl

is the projected source velocity and rl is the listener’s
radius. In the far field, this reduces simply to

v
sl

≈ −rsωm sin(ωmt)

»

1

0

–

(11)

Substituting into the Doppler expression (7) with the listener ve-
locity vl set to zero yields

ωl =
ωs

1 + rsωm sin(ωmt)/c
≈ ωs

h

1 −
rsωm

c
sin(ωmt)

i

,

(12)
where the approximation is valid for small Doppler shifts. Thus,
in the far field, a rotating tube causes an approximately sinusoidal
multiplicative frequency shift, with the amplitude given by tube’s
rotational radius rs times tube angular velocity ωm divided by
sound velocity c.

5. THE COMPLETE MODEL

The complete singing tube model is summarized in figure 7.
The model is driven by two kinds of parameters:

1. Physical parameters: Length of the tube L and distance
between corrugations d.

2. Control parameters: Angular velocity ωm and rotational
radius rs.

The angular velocity ωm and the rotational radius rs are used
as a parameter for the Doppler effect simulation. A fractional delay
line [8] allows to continuously vary the discrete length N of the
tube, where N = fs2L/c, where fs is the sampling rate and c is,
as before, the speed of sound in air.

A sharp second order resonant filter, tuned to the mode of the
tube closest to ωmL/d, where d is the distance between corru-
gations, models the effect of corrugations as well as propagation
losses.

We noticed, infact, that adding an additional lowpass filter to
account for propagation losses along the tube does not improve the
quality of the synthesis. We therefore lump all frequency depen-
dent losses into the bandpass filter that accounts for corrugations.

Fractional
delay

Resonant
filter

Doppler
simulator

N samples
delay+

Input parameters

Figure 7: Simplified block diagram of the complete model that sim-
ulates the corrugated tube.

6. SIMULATION RESULTS

Figure 8 shows the sonogram of the synthetic corrugated tube while
increasing the rotational speed. Notice how, as in the case of the
real tube, one strong mode appears in the spectrum when the rota-
tional speed increases.

7. MUSICAL APPLICATIONS

The corrugated tube’s model has been implemented as an exten-
sion to the real-time environment Max/MSP [10]. The model of
the singing tube has been used in the piece Garden of Dragon for
cellophane, corrugated tubes and computer. This piece presents a
communication between the virtual and real singing pipes using
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Figure 8: Sonogram of the synthetic corrugated tube while in-
creasing the rotational speed.

Max/MSP. The Max/MSP physical model extends the possibilities
of the real tubes in several areas: vibrato, pitch and amplitude con-
trol, and noise to pitch ratio. The acoustic tubes control the virtual
choir of tubes using the fiddle∼ pitch tracker [11] of Max/MSP.

8. CONCLUSIONS

We proposed a model of a rotating corrugated tube which runs
in real-time under the Max/MSP platform. The tube used in the
experiments was the one that produced the most amplified and in-
teresting sonorities compared to other corrugated tubes of different
materials. From empirical observations we can state that the best
sounding tubes are the ones with the most flexible shapes. Corru-
gations need to be interior to the tube, otherwise their effect dis-
appears. Of course the symmetry of the tube is also important:
corrugations placed at symmetrical positions along the tube pro-
duce nice sonorities, while tubes whose shape gets damaged after
a long use become less resonant than newly produced tubes.

It is also interesting to notice that in vision there exists a phe-
nomenon similar to the acoustical amplification that appears in the
corrugated tubes called the Smith and Purcell radiation [12]: when
an electron beam passes over a grating, it generates an oscillating
image charge that radiates.
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